Chemistry Letters 1999 219

## Coordination of Epithio Groups of *p-tert*-Butylthiacalix[4]arene in a Zn<sup>2+</sup> Complex Studied by X-Ray Crystallography

Nobuhiko Iki,\* Naoya Morohashi, Chizuko Kabuto,<sup>†</sup> and Sotaro Miyano\*

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University,

Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579

† Department of Chamistry, Graduate School of Science, Talkaku University, Annuali Aoba Aoba ku, Sandai 0

†Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 980-8578

(Received November 12, 1998; CL-980862)

Single-crystal X-ray analysis has shown that *p-tert*-butylthiacalix[4]arene ( $H_4L$ ) binds to  $Zn^{2+}$  ion by bridging sulfur atoms in addition to phenolic oxygen atoms to form  $[Zn_4L(H_2L)_2]$ .

A wide variety of metal complexes of *p-tert*-butylcalix-[4]arene (CA) have been synthesized and studied by X-ray crystallography, which has revealed the coordination of phenolic oxygen atoms.<sup>1</sup> To the best of our knowledge, however, CA itself has not been reported to be able to bind metal ions in solvent extraction. In a previous paper, we first reported a convenient, one-step synthesis of *p-tert*-butylthiacalix[4]arene (TCA, H<sub>4</sub>L) in a satisfactory yield, in which *o,o'* positions of four *p-tert*-butylphenol units are bridged by epithio groups instead of methylene groups.<sup>2</sup> Since then, we have been engaged in a project to develop novel functions of TCA such as complexation property with metal ions<sup>3-5</sup> and organic compounds<sup>6</sup> and chiral differentiation ability.<sup>7</sup>

OH X A B CA: X = CH<sub>2</sub>; TCA (H<sub>4</sub>L): X = S

As one of the remarkable results of the replacement of  $CH_2$  by S, we demonstrated that TCA can quantitatively extract transition metal ions such as  $Co^{2+}$ ,  $Cu^{2+}$  and  $Zn^{2+}$  from an aqueous phase into chloroform.<sup>3</sup> We confirmed that CA shows little extraction ability under the comparable reaction conditions as has been reported in the literature.<sup>3</sup> Therefore, a question arises how TCA binds metal ions without the aid of the supplementary ligating groups such as ester, amide or carboxy as required in case of CA.<sup>8</sup> Herein we studied the structure of a TCA- $Zn^{2+}$  complex by X-ray crystallography to answer this question.

We synthesized the TCA-Zn<sup>2+</sup> complex *via* solvent extraction protocol.<sup>3</sup> Briefly, aqueous solution (10 cm<sup>3</sup>) containing  $7.5 \times 10^{-2}$  M Zn<sup>2+</sup> and 0.5 M Tris-HCl buffer (pH = 8.0) and chloroform solution (10 cm<sup>3</sup>) of  $5.0 \times 10^{-2}$  M TCA are shaken together for 24 h to form TCA-zinc(II) complex quantitatively. The aliquot of the organic phase was filtered through Omnipore JH Filter (0.5  $\mu$ m, Millipore), evaporated to dryness and dissolved into 20 cm<sup>3</sup> of dry benzene under nitrogen. Half of the solvent was evaporated by heating on an oil bath, which was followed by addition of 10 cm<sup>3</sup> of

anhydrous methanol. The solution was allowed to cool and stand at room temperature to obtain colorless crystals of TCA- $\rm Zn^{2+}$  in 48 h.9 The crystal was air sensitive so that intensity data were measured in a capillary filled with the mother liquor.  $^{10}$ 

As shown in Figure 1, TCA-Zn<sup>2+</sup> complex comprises one  $L^{4-}$  and two  $H_2L^{2-}$  in cone conformation fused at the lower rim by four  $Zn^{2+}$  ions to have the composition of  $[Zn_4L(H_2L)_2]^{11}$  and  $C_2$  symmetry with the symmetry axis passing through the

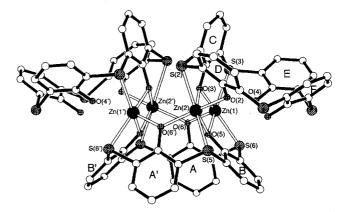



Figure 1. Molecular structure of [Zn<sub>4</sub>L(H<sub>2</sub>L)<sub>2</sub>]. Hydrogen atoms, Bu<sup>t</sup> groups, and included benzenes are omitted. Selected bond length (Å) and angles (°): Zn(1)–S(3) 2.527(4), Zn(1)–O(3) 1.969(8), Zn(1)–O(6) 2.028(7),  $Z_n(1)$ -S(6) 2.436(4),  $Z_n(1)$ -O(5) 2.041(8),  $Z_n(2)$ -S(5) 2.651(4),  $Z_n(2)$ -O(3) 2.058(8), Zn(2)–O(6') 2.051(7), Zn(2)–S(2) 2.675(4), Zn(2)–O(2) 2.056(8), Zn(2)-O(5) 2.035(8), S(3)-Zn(1)-S(6) 112.9(1), S(3)-Zn(1)-O(3) 82.6(3), S(3)-Zn(1)-O(5) 153.9(2), S(3)-Zn(1)-O(6) 104.5(2), S(6)-Zn(1)-O(3)S(6)-Zn(1)-O(5)S(6)-Zn(1)-O(6)156.4(2), 82.1(2), O(3)-Zn(1)-O(5) 77.4(3), O(3)-Zn(1)-O(6) 107.3(3), O(5)-Zn(1)-O(6)S(2)-Zn(2)-O(2) 97.3(3), S(2)-Zn(2)-S(5)130.1(1), S(2)-Zn(2)-O(3) 76.0(2), S(2)-Zn(2)-O(5) 151.5(2), S(2)-Zn(2)-O(6')95.7(2), S(5)-Zn(2)-O(2)80.2(3), S(5)-Zn(2)-O(3)150.7(3). S(5)-Zn(2)-O(5) 77.7(2), S(5)-Zn(2)-O(6') 80.0(2), O(2)-Zn(2)-O(3)96.3(3), O(2)–Zn(2)–O(5) 107.0(3), O(2)–Zn(2)–O(6') 146.3(3), O(3)–Zn(2)–O(5) 75.5(3), O(3)–Zn(2)–O(6') 114.0(3), O(5)–Zn(2)–O(6') 95.1(3). Atoms denoted ' are related to their counterparts by the symmetry operator: 1-x, y, 1/2-z.

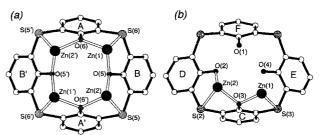



Figure 2. Top view of the TCA moieties of the  $[Zn_4L(H_2L)_2]$  complex. (a)  $L^4$ , (b)  $H_2L^2$ . For clarity, all hydrogen atoms and  $Bu^1$  groups are omitted.

220 Chemistry Letters 1999

center of the cavity of L4-. The inclusion of benzene molecules in the crystal lattice was observed (not drawn in Figure 1). There are two kinds of coordination environment of five and six coordination. In a distorted square pyramidal coordination geometry, Zn(1) and Zn(1') are coordinated to one epithio S-donor and two phenolate O-donors belonging to L4and one epithio S-donor and one phenolate S-donor belonging to H<sub>2</sub>L<sup>2-</sup>. The bond length between Zn<sup>2+</sup> and ligating atoms is in the range of 1.97  $\sim$  2.04 Å for Zn-O and 2.44  $\sim$  2.53 Å for Zn-S. Hence the distance between Zn(1 or 1') and O(4 or 4'), which is located below the bottom of the square pyramid, was too large (2.43 Å) for Zn-O bond, there seems no coordination bond between them. On the other hand, Zn(2) and Zn(2') are coordinated to one epithio S-donor and two phenolate O-donors of both L4- and H<sub>2</sub>L<sup>2-</sup> in a distorted octahedral coordination geometry, where the bond length between Zn2+ and ligating atoms is larger in the range of 2.04 ~ 2.06 Å for Zn-O and 2.65 ~ 2.68 Å for Zn-S.

Both  $L^{4-}$  and  $H_2L^{2-}$  form five membered chelated rings with  $Zn^{2+}$  (Figure 2). The  $L^{4-}$  coordinating to four  $Zn^{2+}$  is slightly flattened and has  $C_2$  symmetry, in which the interplanar angles for two sets of facing aromatic rings are 47.20° (rings A versus A') and 89.86° (rings B versus B') (Figure 2a). The  $H_2L^{2-}$  is somewhat more distorted having no symmetry with interplanar angles of 111.25° (rings D versus E) and 43.38° (rings C versus F) (Figure 2b). The two residual phenolic protons in  $H_2L^{2-}$  are seemingly hydrogen bonded to each other  $[O(1)...O(4)\ 2.56\ \text{Å}]$  and with a phenolate oxygen  $[O(1)...O(2)\ 2.49\ \text{Å}]$  which is coordinated to  $Zn^{2+}$  ion.

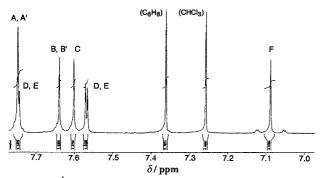



Figure 3.  $^{1}H$  NMR spectrum of the crystal species, [Zn<sub>4</sub>L(H<sub>2</sub>L)<sub>2</sub>], dissolved in CDCl<sub>3</sub> (27  $^{\circ}$ C). The CHCl<sub>3</sub> peak was from the impurity in CDCl<sub>3</sub>, while the C<sub>6</sub>H<sub>6</sub> was from the included benzene molelules in the crystal lattice.

Figure 4. Tautomerism in H<sub>2</sub>L<sup>2</sup>- moiety of the [Zn<sub>4</sub>L(H<sub>2</sub>L)<sub>2</sub>] complex.

The <sup>1</sup>H NMR of the single crystal species  $[Zn_4L(H_2L)_2]$  measured as a solution dissolved in CDCl<sub>3</sub> exhibited four singlets and one pair of *meta* coupled doublets for the aromatic protons (Figure 3).<sup>9</sup> This suggests the existence of five kinds of aromatic rings as assigned in Figure 3 and therefore the higher symmetry than the one in the crystal structure. This is best understood by assuming the tautomerism between five and six coordinated  $Zn^{2+}$  ions in  $H_2L^{2-}$  moiety as shown in Figure 4. Namely, formation and breaking of two hydrogen bonds and one O- $Zn^{2+}$  coordination bond occur simultaneously. As a result,  $[Zn_4L(H_2L)_2]$  has  $C_{2\nu}$  symmetry in solution state.

The X-ray structure analysis of  $[Zn_4L(H_2L)_2]$  complex has proven the contribution of epithio S to bind  $Zn^{2+}$  ion, as has been suggested previously by solvent extraction and NMR study.<sup>3</sup> Among calixarenes and the analogues, the characteristic of TCA to coordinate to metal ions by bridging X group is unique, which must be impossible in case of  $X = CH_2$ .

The authors wish to thank Dr. H. Takizawa and Dr. K. Ueda, Tohoku University, for their kind assistance to measure X-ray reflection intensity. This work was supported by Grantin-Aid for Scientific Research (No. 09750940) from the Ministry of Education, Science, Sports and Culture, Japan.

## References and Notes

- See e.g.; S. R. Dubberley, A. J. Blake, and P. Mountford, J. Chem. Soc., Chem. Commun., 1997, 1603; and literatures cited therein.
- H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama, and S. Miyano, Tetrahedron Lett., 38, 3971(1997).
- N. Iki, N. Morohashi, F. Narumi, and S. Miyano, Bull. Chem. Soc. Jpn., 71, 1597(1998).
- 4 N. Iki, H. Kumagai, N. Morohashi, K. Ejima, M. Hasegawa, S. Miyanari, and S. Miyano, *Tetrahedoron Lett.*, 39, 7559 (1998).
- N. Iki, F. Narumi, T. Fujimoto, N. Morohashi, and S. Miyano, J. Chem. Soc., Perkin Trans. 2, 1998, 2745.
- 6 N. Iki, T. Fujimoto, and S. Miyano, Chem. Lett., 1998, 625.
- N. Iki, F. Narumi, T. Suzuki, A. Sugawara, and S. Miyano, Chem. Lett., 1998, 1065.
- 8 See literatures cited in reference 3.
- Elemental analysis and selected spectroscopic data. Mp >360°C. Found: C, 59.32; H, 5.54; S, 15.59%. Anal. Calcd for  $C_{120}H_{136}O_{12}S_{12}Zn_4$ : C, 59.64; H, 5.67; S, 15.92%. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.05 (s, 18H, Bu<sup>1</sup>), 1.12 (s, 18H, Bu<sup>1</sup>), 1.22 (s, 18H, Bu<sup>1</sup>), 1.23 (s, 36H, Bu<sup>1</sup>), 7.09 (s, 4H, Ar-H), 7.57 (d, 4H, Ar-H,  $I_{meta}$  2.5 Hz), 7.60 (s, 4H, Ar-H), 7.64 (s, 4H, Ar-H), 7.74 (d, 4H, Ar-H,  $I_{meta}$  2.5 Hz), 7.75 (s, 4H, Ar-H), 13.8 (s, 4H, OH). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  31.08, 31.31, 31.35, 31.49, 31.57 [C(CH<sub>3</sub>)<sub>3</sub>], 33.83, 34.09, 34.13, 34.17 [C(CH<sub>3</sub>)<sub>3</sub>], 118.60, 120.04, 120.79, 121.30, 121.92 (*ipso*  $C_{Ar}$  with respect to S), 133.10, 133.63, 134.29, 135.97, 136.49, 136.72 (*ipso*  $C_{Ar}$  with respect to H), 140.05, 140.11, 141.11, 141.33, 142.37 (*ipso*  $C_{Ar}$  with respect to Bu<sup>1</sup>), 157.42, 158.12, 158.48, 159.54, 160.36 (*ipso*  $C_{Ar}$  with respect to OH).
- 10 Crystallographic Data: C<sub>120</sub>H<sub>136</sub>O<sub>12</sub>Zn<sub>4</sub>S<sub>12</sub>·7(C<sub>6</sub>H<sub>6</sub>), FW = 2963.42, Monoclinic, a = 33.59(1) Å, b = 23.19(1) Å, c = 26.50(1) Å, β= 126.89(2)°, V = 16512(11) Å<sup>3</sup>, Mo-Kα radiation (λ = 0.71069 Å), space group C2/c (No. 15), Z = 4, D<sub>calc</sub> = 1.192 g/cm<sup>3</sup>, T = 296 K, μ (Mo-Kα) = 7.80 cm<sup>-1</sup>, No. of measured reflection = 5692 (20 < 55°), final R = 0.066, R<sub>w</sub> = 0.078 for 5212 observed reflections (I<sub>0</sub>>3σ (I<sub>0</sub>)), GOF = 1.83. The molecule has a crystallographic two-fold axis symmetry. Out of five independent tert-butyl groups, two groups were found as disorder, which were refined isotropically. Finally, a total of seven benzene, which are included in the crystal lattice molecules, were found for one [Zn<sub>4</sub>L(H<sub>2</sub>L)<sub>2</sub>] molecule.
- 11 It should be noted that the composition of the TCA- $Zn^{2+}$  complex was changed to  $[Zn_4L(H_2L)_2]$  upon crystallization of  $[Zn(H_2L)]$  which had been obtained by solvent extraction.<sup>3</sup>